|
real(kind=f64) function | gauss_lobatto_integral_1d (f, a, b, n) |
| Gauss-Lobatto Quadrature. More...
|
|
real(kind=f64) function, dimension(2, n), public | sll_f_gauss_lobatto_points_and_weights (n, a, b) |
| Returns a 2d array of size (2,n) containing gauss-lobatto points and weights in the interval [a,b]. More...
|
|
real(kind=f64) function, dimension(n), public | sll_f_gauss_lobatto_points (n, a, b) |
| Returns a 1d array of size (n) containing gauss-lobatto points in the interval [a,b]. More...
|
|
real(kind=f64) function, dimension(n), public | sll_f_gauss_lobatto_weights (n, a, b) |
| Returns a 1d array of size (n) containing gauss-lobatto weights in the interval [a,b]. More...
|
|
function, public | sll_f_gauss_lobatto_derivative_matrix (n, y) |
| Construction of the derivative matrix for Gauss-Lobatto, The matrix must be already allocated of size \( n^2 \). More...
|
|
subroutine | dlob (n, dalpha, dbeta, dleft, dright, dzero, dweigh, ierr, de, da, db) |
| This comes from http://dl.acm.org, Algorithme 726 : ORTHPOL, appendices and supplements To use those functions, READ the documentation beside and find more information about coefficients in paper Algorithm 726 - ORTHPOL: A package of routines for generating orthogonal polynomials and Gauss-type quadrature rules by Walter Gautschi (here xxx is 726 in other references) formulas (1.1) to (1.3) page 2, and book Numerical Mathematics by Alfio Quarteroni, Riccardo Sacco and Fausto Saleri section 10. More...
|
|
subroutine | dgauss (n, dalpha, dbeta, deps, dzero, dweigh, ierr, de) |
| Given n and a measure dlambda, this routine generates the n-point Gaussian quadrature formula. More...
|
|