Report Typos and Errors    
Semi-Lagrangian Library
Modular library for kinetic and gyrokinetic simulations of plasmas in fusion energy devices.
Derived types and interfaces | Functions/Subroutines | Variables
sll_m_splines_pp Module Reference

Description

Splines in pp form.

Authors
Katharina Kormann, IPP Benedikt Perse, IPP

Implement splines on a uniform grid, periodic boundaries implemented for degree 0-6 and clamped boundaries for degree 1-3

Derived types and interfaces

type  sll_t_spline_pp_1d
 arbitrary degree 1d spline More...
 
type  sll_t_spline_pp_2d
 arbitrary degree 2d spline More...
 
type  sll_t_spline_pp_3d
 arbitrary degree 3d spline More...
 

Functions/Subroutines

subroutine, public sll_s_spline_pp_pp_to_b_1d (self, n_cells, pp_coeffs, b_coeffs)
 Compute b_coeffs from coefficients of the monomials (in pp_coeffs) More...
 
subroutine sll_s_spline_pp_b_to_pp_1d_clamped (self, n_cells, b_coeffs, pp_coeffs)
 Convert 1d spline in B form to spline in pp form for clamped spline. More...
 
subroutine sll_s_spline_pp_b_to_pp_1d_clamped_clampeddiri (self, n_cells, b_coeffs, pp_coeffs)
 Convert 1d spline in B form to spline in pp form for clamped spline and Dirichlet conditions on the right boundary. More...
 
subroutine, public sll_s_spline_pp_b_to_pp_1d (self, n_cells, b_coeffs, pp_coeffs)
 Convert 1d spline in B form to spline in pp form with periodic boundary conditions. More...
 
subroutine sll_s_spline_pp_b_to_pp_1d_cell (self, b_coeffs, pp_coeffs)
 Convert 1d spline in B form in a cell to spline in pp form with periodic boundary conditions. More...
 
subroutine sll_s_spline_pp_b_to_pp_1d_cella (degree, pp_b, b_coeffs, pp_coeffs)
 Convert 1d spline in B form in a cell to spline in pp form for specified pp_coefficients of the b_splines. More...
 
subroutine, public sll_s_spline_pp_b_to_pp_2d_periodic (self, n_cells, b_coeffs, pp_coeffs)
 Convert 2d spline in B form to spline in pp form with periodic boundary conditions This is a special case of the procedure sll_s_spline_pp_b_to_pp_2d for the double periodic case to avoid the select case statements. More...
 
subroutine, public sll_s_spline_pp_b_to_pp_2d (self, n_cells, b_coeffs, pp_coeffs)
 Convert 2d spline in B form to spline in pp form. More...
 
subroutine sll_s_spline_pp_b_to_pp_2d_cell (spline1, spline2, n_cells, b_coeffs, pp_coeffs, i, j)
 Convert 2d spline in B form in a cell to spline in pp form with periodic boundary conditions. More...
 
subroutine, public sll_s_spline_pp_b_to_pp_3d (self, n_cells, b_coeffs, pp_coeffs)
 Convert 3d spline in B form to spline in pp form with periodic boundary conditions. More...
 
subroutine sll_s_spline_pp_b_to_pp_3d_cell (self, n_cells, b_coeffs, pp_coeffs, i, j, k)
 Convert 3d spline in B form in a cell to spline in pp form with periodic boundary conditions. More...
 
subroutine sll_s_spline_pp_b_to_pp_3d_cella (self, n_cells, b_coeffs, pp_coeffs, i, j, k)
 Convert 3d spline in B form in a cell to spline in pp form with clamped boundary in first direction and periodic boundary conditions in the other directions. More...
 
subroutine sll_s_spline_pp_b_to_pp_3d_cella2f (self, n_cells, b_coeffs, pp_coeffs, i, j, k)
 Convert 3d spline in B form in a cell to spline in pp form with clamped boundary in all three directions. More...
 
subroutine sll_s_spline_pp_b_to_pp_3d_cellaf (self, n_cells, b_coeffs, pp_coeffs, i, j, k)
 Convert 3d spline in B form in a cell to spline in pp form with clamped boundary in all three directions. More...
 
subroutine, public sll_s_spline_pp_b_to_pp_3d_clamped (self, n_cells, b_coeffs, pp_coeffs)
 Convert 3d spline in B form to spline in pp form for clamped spline. More...
 
subroutine, public sll_s_spline_pp_b_to_pp_3d_clamped_2full (self, n_cells, b_coeffs, pp_coeffs)
 Convert 3d spline in B form to spline in pp form for clamped spline. More...
 
subroutine sll_s_spline_pp_b_to_pp_3d_clamped_full (self, n_cells, b_coeffs, pp_coeffs)
 Convert 3d spline in B form to spline in pp form for clamped spline. More...
 
subroutine, public sll_s_spline_evaluate_basis_b_form_1d_clamped (self, n_cells, b_coeffs, val)
 
subroutine, public sll_s_spline_evaluate_basis_b_form_1d_periodic (self, n_cells, b_coeffs, val)
 
subroutine sll_s_spline_evaluate_basis_pp_form_1d (self, n_cells, pp_coeffs, val)
 
subroutine, public sll_s_spline_evaluate_basis_b_form_3d_clamped (self, n_cells, b_coeffs, val)
 
subroutine, public sll_s_spline_evaluate_basis_b_form_3d_periodic (self, n_cells, b_coeffs, val)
 
subroutine sll_s_spline_evaluate_basis_pp_form_3d (self, n_cells, pp_coeffs, val)
 
subroutine, public sll_s_spline_pp_horner_m_1d (self, val, degree, x)
 Perform a 1d hornerschema on the poly_coeffs. More...
 
subroutine, public sll_s_spline_pp_horner_m_2d (self, val, degree, x)
 Perform two times a 1d hornerschema on the poly_coeffs. More...
 
subroutine, public sll_s_spline_pp_horner_m_3d (self, val, degree, x)
 Perform three times a 1d hornerschema on the poly_coeffs. More...
 
subroutine, public sll_s_spline_pp_horner_primitive_1d (val, degree, pp_coeffs, x)
 Perform a 1d hornerschema on the pp_coeffs evaluate at x. More...
 
real(kind=f64) function, public sll_f_spline_pp_horner_1d (degree, pp_coeffs, x, index)
 Perform a 1d hornerschema on the pp_coeffs at index. More...
 
real(kind=f64) function sll_f_spline_pp_horner_derivative_1d (degree, pp_coeffs, x, index)
 Perform a 1d hornerschema on the pp_coeffs at index. More...
 
real(kind=f64) function, public sll_f_spline_pp_horner_2d (degree, pp_coeffs, x, indices, n_cells)
 Perform a 2d hornerschema on the pp_coeffs at the indices. More...
 
real(kind=f64) function, public sll_f_spline_pp_horner_3d (degree, pp_coeffs, x, indices, n_cells)
 Perform a 3d hornerschema on the pp_coeffs at the indices. More...
 
real(kind=f64) function, public sll_f_spline_pp_horner_3d_d1 (degree, pp_coeffs, x, indices, n_cells)
 Perform a 3d hornerschema on the pp_coeffs at the indices. More...
 
real(kind=f64) function, public sll_f_spline_pp_horner_3d_d2 (degree, pp_coeffs, x, indices, n_cells)
 Perform a 3d hornerschema on the pp_coeffs at the indices. More...
 
real(kind=f64) function, public sll_f_spline_pp_horner_3d_d3 (degree, pp_coeffs, x, indices, n_cells)
 Perform a 3d hornerschema on the pp_coeffs at the indices. More...
 
real(kind=f64) function, public sll_f_spline_pp_horner_derivative_3d (degree, pp_coeffs, x, indices, n_cells, component)
 Perform a 3d hornerschema on the pp_coeffs at the indices. More...
 
subroutine, public sll_s_spline_pp_init_1d (self, degree, n_cells, boundary)
 Initialize sll_t_spline_pp_1d object (Set poly_coeffs depending on degree) More...
 
subroutine, public sll_s_spline_pp_init_2d (self, degree, n_cells, boundary)
 Initialize sll_t_spline_pp_2d object. More...
 
subroutine, public sll_s_spline_pp_init_3d (self, degree, n_cells, boundary)
 Initialize sll_t_spline_pp_3d object. More...
 
subroutine, public sll_s_spline_pp_free_1d (self)
 Destructor 1d. More...
 
subroutine, public sll_s_spline_pp_free_2d (self)
 Destructor 2d. More...
 
subroutine, public sll_s_spline_pp_free_3d (self)
 Destructor 3d. More...
 

Variables

integer(kind=i32), parameter, public sll_p_boundary_periodic = 0
 Parameter to specify boundary conditions. More...
 
integer(kind=i32), parameter, public sll_p_boundary_clamped = 1
 Parameter specifying clamped boundary conditions. More...
 
integer(kind=i32), parameter, public sll_p_boundary_clamped_clampeddiri = 2
 Parameter specifying clamped boundary conditions with the last point left out (for Dirichlet conditions on the right side of the domain) More...
 
integer(kind=i32), parameter, public sll_p_boundary_clampeddiri = 3
 Parameter specifying clamped boundary conditions with the first and last point left out (for Dirichlet conditions) More...
 
integer(kind=i32), parameter, public sll_p_boundary_clampeddiri_clamped = 4
 Parameter specifying clamped boundary conditions with the first point left out (for Dirichlet conditions on the left side of the domain) More...
 
integer(kind=i32), parameter, public sll_p_boundary_clamped_square = 5
 Parameter specifying clamped boundary conditions with square spline for the 0-form, boundary spline of degree 2 is set to zero. More...
 
integer(kind=i32), parameter, public sll_p_boundary_clamped_cubic = 6
 Parameter specifying clamped boundary conditions with a cubic spline for the 0-form, boundary spline of degree 3 is set to zero. More...
 
real(kind=f64), parameter inv_2 = 1._f64/2._f64
 
real(kind=f64), parameter inv_3 = 1._f64/3._f64
 
real(kind=f64), parameter inv_4 = 1._f64/4._f64
 
real(kind=f64), parameter inv_6 = 1._f64/6._f64
 
real(kind=f64), parameter inv_7 = 1._f64/7._f64
 
real(kind=f64), parameter inv_8 = 1._f64/8._f64
 
real(kind=f64), parameter inv_12 = 1._f64/12._f64
 
real(kind=f64), parameter inv_16 = 1._f64/16._f64
 
real(kind=f64), parameter inv_18 = 1._f64/18._f64
 
real(kind=f64), parameter inv_20 = 1._f64/20._f64
 
real(kind=f64), parameter inv_24 = 1._f64/24._f64
 
real(kind=f64), parameter inv_30 = 1._f64/30._f64
 
real(kind=f64), parameter inv_36 = 1._f64/36._f64
 
real(kind=f64), parameter inv_48 = 1._f64/48._f64
 
real(kind=f64), parameter inv_60 = 1._f64/60._f64
 
real(kind=f64), parameter inv_72 = 1._f64/72._f64
 
real(kind=f64), parameter inv_80 = 1._f64/80._f64
 
real(kind=f64), parameter inv_120 = 1._f64/120._f64
 
real(kind=f64), parameter inv_240 = 1._f64/240._f64
 
real(kind=f64), parameter inv_144 = 1._f64/144._f64
 
real(kind=f64), parameter inv_720 = 1._f64/720._f64
 
real(kind=f64), parameter inv_5040 = 1._f64/5040._f64
 

Function/Subroutine Documentation

◆ sll_f_spline_pp_horner_1d()

real(kind=f64) function, public sll_m_splines_pp::sll_f_spline_pp_horner_1d ( integer(kind=i32), intent(in)  degree,
real(kind=f64), dimension(:, :), intent(in)  pp_coeffs,
real(kind=f64), intent(in)  x,
integer(kind=i32), intent(in)  index 
)

Perform a 1d hornerschema on the pp_coeffs at index.

Parameters
[in]degreedegree of the spline
[in]pp_coeffscoefficients of spline in pp-form
[in]xpoint at which we evaluate our spline
[in]indexindex of cell in which is x
Returns
value of the splinefunction at point x

Definition at line 1174 of file sll_m_splines_pp.F90.

Here is the caller graph for this function:

◆ sll_f_spline_pp_horner_2d()

real(kind=f64) function, public sll_m_splines_pp::sll_f_spline_pp_horner_2d ( integer(kind=i32), dimension(2), intent(in)  degree,
real(kind=f64), dimension(:, :), intent(in)  pp_coeffs,
real(kind=f64), dimension(2), intent(in)  x,
integer(kind=i32), dimension(2), intent(in)  indices,
integer(kind=i32), dimension(2), intent(in)  n_cells 
)

Perform a 2d hornerschema on the pp_coeffs at the indices.

Parameters
[in]degreedegree of the spline
[in]pp_coeffscoefficients of spline in pp-form
[in]xpoint at which we evaluate our spline
[in]indicesindices of cell in which is x
[in]n_cellsnumber of gridcells
Returns
value of the splinefunction at point x

Perform a 1d hornerschema in the first dimension

Perform a 1d hornerschema in the second dimension

Definition at line 1208 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_f_spline_pp_horner_3d()

real(kind=f64) function, public sll_m_splines_pp::sll_f_spline_pp_horner_3d ( integer(kind=i32), dimension(3), intent(in)  degree,
real(kind=f64), dimension(:, :), intent(in)  pp_coeffs,
real(kind=f64), dimension(3), intent(in)  x,
integer(kind=i32), dimension(3), intent(in)  indices,
integer(kind=i32), dimension(3), intent(in)  n_cells 
)

Perform a 3d hornerschema on the pp_coeffs at the indices.

Parameters
[in]degreedegree of the spline
[in]pp_coeffscoefficients of spline in pp-form
[in]xpoint at which we evaluate our spline
[in]indicesindices of cell in which is x
[in]n_cellsnumber of gridcells
Returns
value of the splinefunction at point x

Perform a 1d hornerschema in the first dimension

Perform a 2d hornerschema in the second and third dimension

Definition at line 1226 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_f_spline_pp_horner_3d_d1()

real(kind=f64) function, public sll_m_splines_pp::sll_f_spline_pp_horner_3d_d1 ( integer(kind=i32), dimension(3), intent(in)  degree,
real(kind=f64), dimension(:, :), intent(in)  pp_coeffs,
real(kind=f64), dimension(3), intent(in)  x,
integer(kind=i32), dimension(3), intent(in)  indices,
integer(kind=i32), dimension(3), intent(in)  n_cells 
)

Perform a 3d hornerschema on the pp_coeffs at the indices.

Parameters
[in]degreedegree of the spline
[in]pp_coeffscoefficients of spline in pp-form
[in]xpoint at which we evaluate our spline
[in]indicesindices of cell in which is x
[in]n_cellsnumber of gridcells
Returns
value of the splinefunction at point x

Perform a 1d hornerschema in the first dimension

Perform a 2d hornerschema in the second and third dimension

Perform a 1d hornerschema in the first dimension

Perform a 1d hornerschema in the second dimension

Definition at line 1250 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_f_spline_pp_horner_3d_d2()

real(kind=f64) function, public sll_m_splines_pp::sll_f_spline_pp_horner_3d_d2 ( integer(kind=i32), dimension(3), intent(in)  degree,
real(kind=f64), dimension(:, :), intent(in)  pp_coeffs,
real(kind=f64), dimension(3), intent(in)  x,
integer(kind=i32), dimension(3), intent(in)  indices,
integer(kind=i32), dimension(3), intent(in)  n_cells 
)

Perform a 3d hornerschema on the pp_coeffs at the indices.

Parameters
[in]degreedegree of the spline
[in]pp_coeffscoefficients of spline in pp-form
[in]xpoint at which we evaluate our spline
[in]indicesindices of cell in which is x
[in]n_cellsnumber of gridcells
Returns
value of the splinefunction at point x

Perform a 1d hornerschema in the first dimension

Perform a 2d hornerschema in the second and third dimension

Perform a 1d hornerschema in the first dimension

Perform a 1d hornerschema in the second dimension

Definition at line 1282 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_f_spline_pp_horner_3d_d3()

real(kind=f64) function, public sll_m_splines_pp::sll_f_spline_pp_horner_3d_d3 ( integer(kind=i32), dimension(3), intent(in)  degree,
real(kind=f64), dimension(:, :), intent(in)  pp_coeffs,
real(kind=f64), dimension(3), intent(in)  x,
integer(kind=i32), dimension(3), intent(in)  indices,
integer(kind=i32), dimension(3), intent(in)  n_cells 
)

Perform a 3d hornerschema on the pp_coeffs at the indices.

Parameters
[in]degreedegree of the spline
[in]pp_coeffscoefficients of spline in pp-form
[in]xpoint at which we evaluate our spline
[in]indicesindices of cell in which is x
[in]n_cellsnumber of gridcells
Returns
value of the splinefunction at point x

Perform a 1d hornerschema in the first dimension

Perform a 2d hornerschema in the second and third dimension

Perform a 1d hornerschema in the first dimension

Perform a 1d hornerschema in the second dimension

Definition at line 1314 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_f_spline_pp_horner_derivative_1d()

real(kind=f64) function sll_m_splines_pp::sll_f_spline_pp_horner_derivative_1d ( integer(kind=i32), intent(in)  degree,
real(kind=f64), dimension(:, :), intent(in)  pp_coeffs,
real(kind=f64), intent(in)  x,
integer(kind=i32), intent(in)  index 
)
private

Perform a 1d hornerschema on the pp_coeffs at index.

Parameters
[in]degreedegree of the spline
[in]pp_coeffscoefficients of spline in pp-form
[in]xpoint at which we evaluate our spline
[in]indexindex of cell in which is x
Returns
value of the splinefunction at point x

Definition at line 1191 of file sll_m_splines_pp.F90.

Here is the caller graph for this function:

◆ sll_f_spline_pp_horner_derivative_3d()

real(kind=f64) function, public sll_m_splines_pp::sll_f_spline_pp_horner_derivative_3d ( integer(kind=i32), dimension(3), intent(in)  degree,
real(kind=f64), dimension(:, :), intent(in)  pp_coeffs,
real(kind=f64), dimension(3), intent(in)  x,
integer(kind=i32), dimension(3), intent(in)  indices,
integer(kind=i32), dimension(3), intent(in)  n_cells,
integer(kind=i32), intent(in)  component 
)

Perform a 3d hornerschema on the pp_coeffs at the indices.

Parameters
[in]degreedegree of the spline
[in]pp_coeffscoefficients of spline in pp-form
[in]xpoint at which we evaluate our spline
[in]indicesindices of cell in which is x
[in]n_cellsnumber of gridcells
Returns
value of the splinefunction at point x

Perform a 1d hornerschema in the first dimension

Perform a 2d hornerschema in the second and third dimension

Definition at line 1346 of file sll_m_splines_pp.F90.

Here is the call graph for this function:

◆ sll_s_spline_evaluate_basis_b_form_1d_clamped()

subroutine, public sll_m_splines_pp::sll_s_spline_evaluate_basis_b_form_1d_clamped ( type(sll_t_spline_pp_1d), intent(in)  self,
integer(kind=i32), intent(in)  n_cells,
real(kind=f64), dimension(n_cells + self%degree), intent(in)  b_coeffs,
real(kind=f64), dimension(:), intent(out)  val 
)
Parameters
[in]selfarbitrary degree 1d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[out]valarray of values

Definition at line 1009 of file sll_m_splines_pp.F90.

Here is the call graph for this function:

◆ sll_s_spline_evaluate_basis_b_form_1d_periodic()

subroutine, public sll_m_splines_pp::sll_s_spline_evaluate_basis_b_form_1d_periodic ( type(sll_t_spline_pp_1d), intent(in)  self,
integer(kind=i32), intent(in)  n_cells,
real(kind=f64), dimension(n_cells), intent(in)  b_coeffs,
real(kind=f64), dimension(:), intent(out)  val 
)
Parameters
[in]selfarbitrary degree 1d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[out]valarray of values

Definition at line 1023 of file sll_m_splines_pp.F90.

Here is the call graph for this function:

◆ sll_s_spline_evaluate_basis_b_form_3d_clamped()

subroutine, public sll_m_splines_pp::sll_s_spline_evaluate_basis_b_form_3d_clamped ( type(sll_t_spline_pp_3d), intent(inout)  self,
integer(kind=i32), dimension(3), intent(in)  n_cells,
real(kind=f64), dimension((n_cells(1) + self%spline1%degree)*n_cells(2)*n_cells(3)), intent(in)  b_coeffs,
real(kind=f64), dimension(:), intent(out)  val 
)
Parameters
[in,out]selfarbitrary degree 1d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[out]valarray of values

Definition at line 1053 of file sll_m_splines_pp.F90.

Here is the call graph for this function:

◆ sll_s_spline_evaluate_basis_b_form_3d_periodic()

subroutine, public sll_m_splines_pp::sll_s_spline_evaluate_basis_b_form_3d_periodic ( type(sll_t_spline_pp_3d), intent(inout)  self,
integer(kind=i32), dimension(3), intent(in)  n_cells,
real(kind=f64), dimension(n_cells(1)*n_cells(2)*n_cells(3)), intent(in)  b_coeffs,
real(kind=f64), dimension(:), intent(out)  val 
)
Parameters
[in,out]selfarbitrary degree 1d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[out]valarray of values

Definition at line 1065 of file sll_m_splines_pp.F90.

Here is the call graph for this function:

◆ sll_s_spline_evaluate_basis_pp_form_1d()

subroutine sll_m_splines_pp::sll_s_spline_evaluate_basis_pp_form_1d ( type(sll_t_spline_pp_1d), intent(in)  self,
integer(kind=i32), intent(in)  n_cells,
real(kind=f64), dimension(self%degree + 1, n_cells), intent(in)  pp_coeffs,
real(kind=f64), dimension(:), intent(out)  val 
)
private
Parameters
[in]selfarbitrary degree 1d spline
[in]n_cellsnumber of gridcells
[in]pp_coeffscoefficients of sp
[out]valarray of values

Definition at line 1037 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_evaluate_basis_pp_form_3d()

subroutine sll_m_splines_pp::sll_s_spline_evaluate_basis_pp_form_3d ( type(sll_t_spline_pp_3d), intent(in)  self,
integer(kind=i32), dimension(3), intent(in)  n_cells,
real(kind=f64), dimension((self%spline1%degree + 1)*(self%spline2%degree + 1)*(self%spline3%degree + 1), n_cells(1)*n_cells(2)*n_cells(3)), intent(in)  pp_coeffs,
real(kind=f64), dimension(:), intent(out)  val 
)
private
Parameters
[in]selfarbitrary degree 1d spline
[in]n_cellsnumber of gridcells
[in]pp_coeffscoefficients of sp
[out]valarray of values

Definition at line 1077 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_b_to_pp_1d()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_b_to_pp_1d ( type(sll_t_spline_pp_1d), intent(in)  self,
integer(kind=i32), intent(in)  n_cells,
real(kind=f64), dimension(n_cells), intent(in)  b_coeffs,
real(kind=f64), dimension(self%degree + 1, n_cells), intent(out)  pp_coeffs 
)

Convert 1d spline in B form to spline in pp form with periodic boundary conditions.

Parameters
[in]selfarbitrary degree 1d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[out]pp_coeffscoefficients of spline in pp-form

Definition at line 209 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_b_to_pp_1d_cell()

subroutine sll_m_splines_pp::sll_s_spline_pp_b_to_pp_1d_cell ( type(sll_t_spline_pp_1d), intent(in)  self,
real(kind=f64), dimension(self%degree + 1), intent(in)  b_coeffs,
real(kind=f64), dimension(self%degree + 1), intent(out)  pp_coeffs 
)
private

Convert 1d spline in B form in a cell to spline in pp form with periodic boundary conditions.

Parameters
[in]selfarbitrary degree 1d spline
[in]b_coeffscoefficients of spline in B-form
[out]pp_coeffscoefficients of spline in pp-form

Definition at line 227 of file sll_m_splines_pp.F90.

Here is the caller graph for this function:

◆ sll_s_spline_pp_b_to_pp_1d_cella()

subroutine sll_m_splines_pp::sll_s_spline_pp_b_to_pp_1d_cella ( integer(kind=i32), intent(in)  degree,
real(kind=f64), dimension(degree + 1, degree + 1), intent(in)  pp_b,
real(kind=f64), dimension(degree + 1), intent(in)  b_coeffs,
real(kind=f64), dimension(degree + 1), intent(out)  pp_coeffs 
)
private

Convert 1d spline in B form in a cell to spline in pp form for specified pp_coefficients of the b_splines.

Parameters
[in]degreespline degree
[in]pp_bpp coefficients of the b spline in this interval
[in]b_coeffscoefficients of spline in B-form
[out]pp_coeffscoefficients of spline in pp-form

Definition at line 245 of file sll_m_splines_pp.F90.

Here is the caller graph for this function:

◆ sll_s_spline_pp_b_to_pp_1d_clamped()

subroutine sll_m_splines_pp::sll_s_spline_pp_b_to_pp_1d_clamped ( type(sll_t_spline_pp_1d), intent(in)  self,
integer(kind=i32), intent(in)  n_cells,
real(kind=f64), dimension(n_cells + self%degree), intent(in)  b_coeffs,
real(kind=f64), dimension(self%degree + 1, n_cells), intent(out)  pp_coeffs 
)
private

Convert 1d spline in B form to spline in pp form for clamped spline.

Parameters
[in]selfarbitrary degree 1d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[out]pp_coeffscoefficients of spline in pp-form

Definition at line 155 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_b_to_pp_1d_clamped_clampeddiri()

subroutine sll_m_splines_pp::sll_s_spline_pp_b_to_pp_1d_clamped_clampeddiri ( type(sll_t_spline_pp_1d), intent(in)  self,
integer(kind=i32), intent(in)  n_cells,
real(kind=f64), dimension(n_cells + self%degree - 1), intent(in)  b_coeffs,
real(kind=f64), dimension(self%degree + 1, n_cells), intent(out)  pp_coeffs 
)
private

Convert 1d spline in B form to spline in pp form for clamped spline and Dirichlet conditions on the right boundary.

Parameters
[in]selfarbitrary degree 1d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[out]pp_coeffscoefficients of spline in pp-form

Definition at line 181 of file sll_m_splines_pp.F90.

Here is the call graph for this function:

◆ sll_s_spline_pp_b_to_pp_2d()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_b_to_pp_2d ( type(sll_t_spline_pp_2d), intent(inout)  self,
integer(kind=i32), dimension(2), intent(in)  n_cells,
real(kind=f64), dimension(:), intent(in)  b_coeffs,
real(kind=f64), dimension((self%spline1%degree + 1)*(self%spline2%degree + 1), n_cells(1)*n_cells(2)), intent(out)  pp_coeffs 
)

Convert 2d spline in B form to spline in pp form.

Parameters
[in,out]selfarbitrary degree 2d spline
[in]n_cellsnumber of gridcells
[out]pp_coeffscoefficients of spline in pp-form

Definition at line 284 of file sll_m_splines_pp.F90.

Here is the call graph for this function:

◆ sll_s_spline_pp_b_to_pp_2d_cell()

subroutine sll_m_splines_pp::sll_s_spline_pp_b_to_pp_2d_cell ( type(sll_t_spline_pp_1d), intent(inout)  spline1,
type(sll_t_spline_pp_1d), intent(inout)  spline2,
integer(kind=i32), dimension(2), intent(in)  n_cells,
real(kind=f64), dimension(n_cells(1)*n_cells(2)), intent(in)  b_coeffs,
real(kind=f64), dimension((spline1%degree + 1)*(spline2%degree + 1), n_cells(1)*n_cells(2)), intent(inout)  pp_coeffs,
integer(kind=i32), intent(in)  i,
integer(kind=i32), intent(in)  j 
)
private

Convert 2d spline in B form in a cell to spline in pp form with periodic boundary conditions.

Parameters
[in,out]spline1arbitrary degree 1d spline
[in,out]spline2arbitrary degree 1d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[in,out]pp_coeffscoefficients of spline in pp-form
[in]jindices

convert b-coefficients in pp-coefficients in first dimension

use of modulo for boundary cells in second dimension

use of modulo for boundary cells in both dimensions

convert b-coefficients in pp_coefficients in second dimension

Definition at line 477 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_b_to_pp_2d_periodic()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_b_to_pp_2d_periodic ( type(sll_t_spline_pp_2d), intent(inout)  self,
integer(kind=i32), dimension(2), intent(in)  n_cells,
real(kind=f64), dimension(n_cells(1)*n_cells(2)), intent(in)  b_coeffs,
real(kind=f64), dimension((self%spline1%degree + 1)*(self%spline2%degree + 1), n_cells(1)*n_cells(2)), intent(out)  pp_coeffs 
)

Convert 2d spline in B form to spline in pp form with periodic boundary conditions This is a special case of the procedure sll_s_spline_pp_b_to_pp_2d for the double periodic case to avoid the select case statements.

Parameters
[in,out]selfarbitrary degree 2d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[out]pp_coeffscoefficients of spline in pp-form

Definition at line 265 of file sll_m_splines_pp.F90.

Here is the call graph for this function:

◆ sll_s_spline_pp_b_to_pp_3d()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_b_to_pp_3d ( type(sll_t_spline_pp_3d), intent(inout)  self,
integer(kind=i32), dimension(3), intent(in)  n_cells,
real(kind=f64), dimension(n_cells(1)*n_cells(2), n_cells(2)), intent(in)  b_coeffs,
real(kind=f64), dimension((self%spline1%degree + 1)*(self%spline2%degree + 1)*(self%spline3%degree + 1), n_cells(1)*n_cells(2)*n_cells(3)), intent(out)  pp_coeffs 
)

Convert 3d spline in B form to spline in pp form with periodic boundary conditions.

Parameters
[in,out]selfarbitrary degree 2d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[out]pp_coeffscoefficients of spline in pp-form

Definition at line 528 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_b_to_pp_3d_cell()

subroutine sll_m_splines_pp::sll_s_spline_pp_b_to_pp_3d_cell ( type(sll_t_spline_pp_3d), intent(inout)  self,
integer(kind=i32), dimension(3), intent(in)  n_cells,
real(kind=f64), dimension(n_cells(1)*n_cells(2)*n_cells(3)), intent(in)  b_coeffs,
real(kind=f64), dimension((self%spline1%degree + 1)*(self%spline2%degree + 1)*(self%spline3%degree + 1), n_cells(1)*n_cells(2)*n_cells(3)), intent(inout)  pp_coeffs,
integer(kind=i32), intent(in)  i,
integer(kind=i32), intent(in)  j,
integer(kind=i32), intent(in)  k 
)
private

Convert 3d spline in B form in a cell to spline in pp form with periodic boundary conditions.

Parameters
[in,out]selfarbitrary degree 3d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[in,out]pp_coeffscoefficients of spline in pp-form
[in]kindices

convert b-coefficients in pp-coefficients in first dimension

use of modulo for boundary cells in third dimension

use of modulo for boundary cells in second and third dimension

use of modulo for boundary cells in all three dimensions

convert b-coefficients in pp-coefficients in second dimension

convert b-coefficients in pp-coefficients in third dimension

Definition at line 546 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_b_to_pp_3d_cella()

subroutine sll_m_splines_pp::sll_s_spline_pp_b_to_pp_3d_cella ( type(sll_t_spline_pp_3d), intent(inout)  self,
integer(kind=i32), dimension(3), intent(in)  n_cells,
real(kind=f64), dimension((n_cells(1) + self%spline1%degree)*n_cells(2)*n_cells(3)), intent(in)  b_coeffs,
real(kind=f64), dimension((self%spline1%degree + 1)*(self%spline2%degree + 1)*(self%spline3%degree + 1), n_cells(1)*n_cells(2)*n_cells(3)), intent(inout)  pp_coeffs,
integer(kind=i32), intent(in)  i,
integer(kind=i32), intent(in)  j,
integer(kind=i32), intent(in)  k 
)
private

Convert 3d spline in B form in a cell to spline in pp form with clamped boundary in first direction and periodic boundary conditions in the other directions.

Parameters
[in,out]selfarbitrary degree 3d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[in,out]pp_coeffscoefficients of spline in pp-form
[in]kindices

convert b-coefficients in pp-coefficients in first dimension

use of modulo for boundary cells in third dimension

use of modulo for boundary cells in second and third dimension

use of modulo for boundary cells in all three dimensions

use of modulo for boundary cells in all three dimensions

convert b-coefficients in pp-coefficients in second dimension

convert b-coefficients in pp-coefficients in third dimension

Definition at line 630 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_b_to_pp_3d_cella2f()

subroutine sll_m_splines_pp::sll_s_spline_pp_b_to_pp_3d_cella2f ( type(sll_t_spline_pp_3d), intent(inout)  self,
integer(kind=i32), dimension(3), intent(in)  n_cells,
real(kind=f64), dimension((n_cells(1) + self%spline1%degree)*n_cells(2)*(n_cells(3) + self%spline3%degree)), intent(in)  b_coeffs,
real(kind=f64), dimension((self%spline1%degree + 1)*(self%spline2%degree + 1)*(self%spline3%degree + 1), n_cells(1)*n_cells(2)*n_cells(3)), intent(inout)  pp_coeffs,
integer(kind=i32), intent(in)  i,
integer(kind=i32), intent(in)  j,
integer(kind=i32), intent(in)  k 
)
private

Convert 3d spline in B form in a cell to spline in pp form with clamped boundary in all three directions.

Parameters
[in,out]selfarbitrary degree 3d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[in,out]pp_coeffscoefficients of spline in pp-form
[in]kindices

convert b-coefficients in pp-coefficients in first dimension

use of modulo for boundary cells in second dimension

convert b-coefficients in pp-coefficients in second dimension

convert b-coefficients in pp-coefficients in third dimension

Definition at line 724 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_b_to_pp_3d_cellaf()

subroutine sll_m_splines_pp::sll_s_spline_pp_b_to_pp_3d_cellaf ( type(sll_t_spline_pp_3d), intent(inout)  self,
integer(kind=i32), dimension(3), intent(in)  n_cells,
real(kind=f64), dimension((n_cells(1) + self%spline1%degree)*(n_cells(2) + self%spline2%degree)*(n_cells(3) + self%spline3%degree)), intent(in)  b_coeffs,
real(kind=f64), dimension((self%spline1%degree + 1)*(self%spline2%degree + 1)*(self%spline3%degree + 1), n_cells(1)*n_cells(2)*n_cells(3)), intent(inout)  pp_coeffs,
integer(kind=i32), intent(in)  i,
integer(kind=i32), intent(in)  j,
integer(kind=i32), intent(in)  k 
)
private

Convert 3d spline in B form in a cell to spline in pp form with clamped boundary in all three directions.

Parameters
[in,out]selfarbitrary degree 3d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[in,out]pp_coeffscoefficients of spline in pp-form
[in]kindices

convert b-coefficients in pp-coefficients in first dimension

convert b-coefficients in pp-coefficients in second dimension

convert b-coefficients in pp-coefficients in third dimension

Definition at line 833 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_b_to_pp_3d_clamped()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_b_to_pp_3d_clamped ( type(sll_t_spline_pp_3d), intent(inout)  self,
integer(kind=i32), dimension(3), intent(in)  n_cells,
real(kind=f64), dimension((n_cells(1) + self%spline1%degree)*n_cells(2)*n_cells(3)), intent(in)  b_coeffs,
real(kind=f64), dimension((self%spline1%degree + 1)*(self%spline2%degree + 1)*(self%spline3%degree + 1), n_cells(1)*n_cells(2)*n_cells(3)), intent(out)  pp_coeffs 
)

Convert 3d spline in B form to spline in pp form for clamped spline.

Parameters
[in,out]selfarbitrary degree 1d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[out]pp_coeffscoefficients of spline in pp-form

Definition at line 957 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_b_to_pp_3d_clamped_2full()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_b_to_pp_3d_clamped_2full ( type(sll_t_spline_pp_3d), intent(inout)  self,
integer(kind=i32), dimension(3), intent(in)  n_cells,
real(kind=f64), dimension((n_cells(1) + self%spline1%degree)*n_cells(2)*(n_cells(3) + self%spline3%degree)), intent(in)  b_coeffs,
real(kind=f64), dimension((self%spline1%degree + 1)*(self%spline2%degree + 1)*(self%spline3%degree + 1), n_cells(1)*n_cells(2)*n_cells(3)), intent(out)  pp_coeffs 
)

Convert 3d spline in B form to spline in pp form for clamped spline.

Parameters
[in,out]selfarbitrary degree 1d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[out]pp_coeffscoefficients of spline in pp-form

Definition at line 974 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_b_to_pp_3d_clamped_full()

subroutine sll_m_splines_pp::sll_s_spline_pp_b_to_pp_3d_clamped_full ( type(sll_t_spline_pp_3d), intent(inout)  self,
integer(kind=i32), dimension(3), intent(in)  n_cells,
real(kind=f64), dimension((n_cells(1) + self%spline1%degree)*(n_cells(2) + self%spline2%degree)*(n_cells(3) + self%spline3%degree)), intent(in)  b_coeffs,
real(kind=f64), dimension((self%spline1%degree + 1)*(self%spline2%degree + 1)*(self%spline3%degree + 1), n_cells(1)*n_cells(2)*n_cells(3)), intent(out)  pp_coeffs 
)
private

Convert 3d spline in B form to spline in pp form for clamped spline.

Parameters
[in,out]selfarbitrary degree 1d spline
[in]n_cellsnumber of gridcells
[in]b_coeffscoefficients of spline in B-form
[out]pp_coeffscoefficients of spline in pp-form

Definition at line 992 of file sll_m_splines_pp.F90.

Here is the call graph for this function:

◆ sll_s_spline_pp_free_1d()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_free_1d ( type(sll_t_spline_pp_1d), intent(inout)  self)

Destructor 1d.

Parameters
[in,out]selfarbitrary degree 1d spline

Definition at line 1684 of file sll_m_splines_pp.F90.

Here is the caller graph for this function:

◆ sll_s_spline_pp_free_2d()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_free_2d ( type(sll_t_spline_pp_2d), intent(inout)  self)

Destructor 2d.

Parameters
[in,out]selfarbitrary degree 2d spline

Definition at line 1695 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_free_3d()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_free_3d ( type(sll_t_spline_pp_3d), intent(inout)  self)

Destructor 3d.

Parameters
[in,out]selfarbitrary degree 3d spline

Definition at line 1704 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_horner_m_1d()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_horner_m_1d ( type(sll_t_spline_pp_1d), intent(in)  self,
real(kind=f64), dimension(:), intent(out)  val,
integer(kind=i32), intent(in)  degree,
real(kind=f64), intent(in)  x 
)

Perform a 1d hornerschema on the poly_coeffs.

Parameters
[in]selfarbitrary degree 1d spline
[out]valarray of values
[in]degreedegree of the spline
[in]xpoint at which we evaluate our spline

Definition at line 1113 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_horner_m_2d()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_horner_m_2d ( type(sll_t_spline_pp_2d), intent(in)  self,
real(kind=f64), dimension(:, :), intent(out)  val,
integer(kind=i32), dimension(2), intent(in)  degree,
real(kind=f64), dimension(2), intent(in)  x 
)

Perform two times a 1d hornerschema on the poly_coeffs.

Parameters
[in]selfarbitrary degree 2d spline
[out]valarray of values
[in]degreedegree of the spline
[in]xpoint at which we evaluate our spline

Definition at line 1126 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_horner_m_3d()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_horner_m_3d ( type(sll_t_spline_pp_3d), intent(in)  self,
real(kind=f64), dimension(:, :), intent(out)  val,
integer(kind=i32), dimension(3), intent(in)  degree,
real(kind=f64), dimension(3), intent(in)  x 
)

Perform three times a 1d hornerschema on the poly_coeffs.

Parameters
[in]selfarbitrary degree 3d spline
[out]valarray of values
[in]degreedegree of the spline
[in]xpoint at which we evaluate our spline

Definition at line 1142 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_horner_primitive_1d()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_horner_primitive_1d ( real(kind=f64), dimension(:), intent(out)  val,
integer(kind=i32), intent(in)  degree,
real(kind=f64), dimension(:, :), intent(in)  pp_coeffs,
real(kind=f64), intent(in)  x 
)

Perform a 1d hornerschema on the pp_coeffs evaluate at x.

Parameters
[out]valarray of values
[in]degreedegree of the spline
[in]pp_coeffscoefficients of spline in pp-form
[in]xpoint at which we evaluate our spline

Definition at line 1161 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_init_1d()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_init_1d ( type(sll_t_spline_pp_1d), intent(out)  self,
integer(kind=i32), intent(in)  degree,
integer(kind=i32), intent(in)  n_cells,
integer(kind=i32), intent(in), optional  boundary 
)

Initialize sll_t_spline_pp_1d object (Set poly_coeffs depending on degree)

Parameters
[out]selfarbitrary degree 1d spline
[in]degreedegree of spline
[in]n_cellsnumber of gridcells

Definition at line 1386 of file sll_m_splines_pp.F90.

Here is the caller graph for this function:

◆ sll_s_spline_pp_init_2d()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_init_2d ( type(sll_t_spline_pp_2d self,
integer(kind=i32), dimension(2), intent(in)  degree,
integer(kind=i32), dimension(2), intent(in)  n_cells,
integer(kind=i32), dimension(2), intent(in), optional  boundary 
)

Initialize sll_t_spline_pp_2d object.

Parameters
selfarbitrary degree 2d spline
[in]degreedegrees of the 1d splines
[in]n_cellsnumber of gridcells in every dimension
[in]boundaryboundary conditions

Definition at line 1639 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_init_3d()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_init_3d ( type(sll_t_spline_pp_3d self,
integer(kind=i32), dimension(3), intent(in)  degree,
integer(kind=i32), dimension(3), intent(in)  n_cells,
integer(kind=i32), dimension(3), intent(in), optional  boundary 
)

Initialize sll_t_spline_pp_3d object.

Parameters
selfarbitrary degree 3d spline
[in]degreedegrees of the 1d splines
[in]n_cellsnumber of gridcells in every dimension
[in]boundaryboundary conditions

Definition at line 1656 of file sll_m_splines_pp.F90.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ sll_s_spline_pp_pp_to_b_1d()

subroutine, public sll_m_splines_pp::sll_s_spline_pp_pp_to_b_1d ( type(sll_t_spline_pp_1d), intent(in)  self,
integer(kind=i32), intent(in)  n_cells,
real(kind=f64), dimension(self%degree + 1, 0:n_cells - 1), intent(in)  pp_coeffs,
real(kind=f64), dimension(0:n_cells - 1), intent(out)  b_coeffs 
)

Compute b_coeffs from coefficients of the monomials (in pp_coeffs)

Parameters
[in]selfarbitrary degree 1d spline
[in]n_cellsnumber of gridcells
[out]b_coeffscoefficients of spline in B-form
[in]pp_coeffscoefficients of spline in pp-form

Definition at line 135 of file sll_m_splines_pp.F90.

Variable Documentation

◆ inv_12

real(kind=f64), parameter inv_12 = 1._f64/12._f64
private

Definition at line 75 of file sll_m_splines_pp.F90.

◆ inv_120

real(kind=f64), parameter inv_120 = 1._f64/120._f64
private

Definition at line 86 of file sll_m_splines_pp.F90.

◆ inv_144

real(kind=f64), parameter inv_144 = 1._f64/144._f64
private

Definition at line 88 of file sll_m_splines_pp.F90.

◆ inv_16

real(kind=f64), parameter inv_16 = 1._f64/16._f64
private

Definition at line 76 of file sll_m_splines_pp.F90.

◆ inv_18

real(kind=f64), parameter inv_18 = 1._f64/18._f64
private

Definition at line 77 of file sll_m_splines_pp.F90.

◆ inv_2

real(kind=f64), parameter inv_2 = 1._f64/2._f64
private

Definition at line 69 of file sll_m_splines_pp.F90.

◆ inv_20

real(kind=f64), parameter inv_20 = 1._f64/20._f64
private

Definition at line 78 of file sll_m_splines_pp.F90.

◆ inv_24

real(kind=f64), parameter inv_24 = 1._f64/24._f64
private

Definition at line 79 of file sll_m_splines_pp.F90.

◆ inv_240

real(kind=f64), parameter inv_240 = 1._f64/240._f64
private

Definition at line 87 of file sll_m_splines_pp.F90.

◆ inv_3

real(kind=f64), parameter inv_3 = 1._f64/3._f64
private

Definition at line 70 of file sll_m_splines_pp.F90.

◆ inv_30

real(kind=f64), parameter inv_30 = 1._f64/30._f64
private

Definition at line 80 of file sll_m_splines_pp.F90.

◆ inv_36

real(kind=f64), parameter inv_36 = 1._f64/36._f64
private

Definition at line 81 of file sll_m_splines_pp.F90.

◆ inv_4

real(kind=f64), parameter inv_4 = 1._f64/4._f64
private

Definition at line 71 of file sll_m_splines_pp.F90.

◆ inv_48

real(kind=f64), parameter inv_48 = 1._f64/48._f64
private

Definition at line 82 of file sll_m_splines_pp.F90.

◆ inv_5040

real(kind=f64), parameter inv_5040 = 1._f64/5040._f64
private

Definition at line 91 of file sll_m_splines_pp.F90.

◆ inv_6

real(kind=f64), parameter inv_6 = 1._f64/6._f64
private

Definition at line 72 of file sll_m_splines_pp.F90.

◆ inv_60

real(kind=f64), parameter inv_60 = 1._f64/60._f64
private

Definition at line 83 of file sll_m_splines_pp.F90.

◆ inv_7

real(kind=f64), parameter inv_7 = 1._f64/7._f64
private

Definition at line 73 of file sll_m_splines_pp.F90.

◆ inv_72

real(kind=f64), parameter inv_72 = 1._f64/72._f64
private

Definition at line 84 of file sll_m_splines_pp.F90.

◆ inv_720

real(kind=f64), parameter inv_720 = 1._f64/720._f64
private

Definition at line 90 of file sll_m_splines_pp.F90.

◆ inv_8

real(kind=f64), parameter inv_8 = 1._f64/8._f64
private

Definition at line 74 of file sll_m_splines_pp.F90.

◆ inv_80

real(kind=f64), parameter inv_80 = 1._f64/80._f64
private

Definition at line 85 of file sll_m_splines_pp.F90.

◆ sll_p_boundary_clamped

integer(kind=i32), parameter, public sll_p_boundary_clamped = 1

Parameter specifying clamped boundary conditions.

Definition at line 62 of file sll_m_splines_pp.F90.

◆ sll_p_boundary_clamped_clampeddiri

integer(kind=i32), parameter, public sll_p_boundary_clamped_clampeddiri = 2

Parameter specifying clamped boundary conditions with the last point left out (for Dirichlet conditions on the right side of the domain)

Definition at line 63 of file sll_m_splines_pp.F90.

◆ sll_p_boundary_clamped_cubic

integer(kind=i32), parameter, public sll_p_boundary_clamped_cubic = 6

Parameter specifying clamped boundary conditions with a cubic spline for the 0-form, boundary spline of degree 3 is set to zero.

Definition at line 67 of file sll_m_splines_pp.F90.

◆ sll_p_boundary_clamped_square

integer(kind=i32), parameter, public sll_p_boundary_clamped_square = 5

Parameter specifying clamped boundary conditions with square spline for the 0-form, boundary spline of degree 2 is set to zero.

Definition at line 66 of file sll_m_splines_pp.F90.

◆ sll_p_boundary_clampeddiri

integer(kind=i32), parameter, public sll_p_boundary_clampeddiri = 3

Parameter specifying clamped boundary conditions with the first and last point left out (for Dirichlet conditions)

Definition at line 64 of file sll_m_splines_pp.F90.

◆ sll_p_boundary_clampeddiri_clamped

integer(kind=i32), parameter, public sll_p_boundary_clampeddiri_clamped = 4

Parameter specifying clamped boundary conditions with the first point left out (for Dirichlet conditions on the left side of the domain)

Definition at line 65 of file sll_m_splines_pp.F90.

◆ sll_p_boundary_periodic

integer(kind=i32), parameter, public sll_p_boundary_periodic = 0

Parameter to specify boundary conditions.

Parameter specifying periodic boundary conditions

Definition at line 61 of file sll_m_splines_pp.F90.

    Report Typos and Errors