Semi-Lagrangian Library
Modular library for kinetic and gyrokinetic simulations of plasmas in fusion energy devices.
|
Particle pusher based on Hamiltonian splitting for 1d2v Vlasov-Poisson.
MPI parallelization by domain cloning. Periodic boundaries. Spline DoFs numerated by the point the spline starts. Reference: Kraus, Kormann, Sonnendrücker, Morrison: GEMPIC: Geometric ElectroMagnetic Particle-In-Cell Methods Control variate: Note the we do not account for the analytic j at the moment (TODO: control_variate for current)
Derived types and interfaces | |
type | sll_t_time_propagator_pic_vm_1d2v_hs |
Hamiltonian splitting type for Vlasov-Maxwell 1d2v. More... | |
Functions/Subroutines | |
subroutine | reinit_fields (self) |
Finalization. More... | |
subroutine | strang_splitting_pic_vm_1d2v_hs (self, dt, number_steps) |
Strang splitting. More... | |
subroutine | lie_splitting_pic_vm_1d2v_hs (self, dt, number_steps) |
Lie splitting. More... | |
subroutine | lie_splitting_back_pic_vm_1d2v_hs (self, dt, number_steps) |
Lie splitting (oposite ordering) More... | |
subroutine | operatorhp1_pic_vm_1d2v_hs (self, dt) |
Push Hp1: Equations to solve are \partial_t f + v_1 \partial_{x_1} f = 0 -> X_new = X_old + dt V_1 V_new,2 = V_old,2 + \int_0 h V_old,1 B_old \partial_t E_1 = - \int v_1 f(t,x_1, v) dv -> E_{1,new} = E_{1,old} - \int \int v_1 f(t,x_1+s v_1,v) dv ds \partial_t E_2 = 0 -> E_{2,new} = E_{2,old} \partial_t B = 0 => B_new = B_old. More... | |
subroutine | compute_particle_boundary_current (self, xold, xnew, vi, wi, qoverm) |
subroutine | operatorhp2_pic_vm_1d2v_hs (self, dt) |
Push Hp2: Equations to solve are X_new = X_old V_new,1 = V_old,1 + \int_0 h V_old,2 B_old \partial_t E_1 = 0 -> E_{1,new} = E_{1,old} \partial_t E_2 = - \int v_2 f(t,x_1, v) dv -> E_{2,new} = E_{2,old} - \int \int v_2 f(t,x_1+s v_1,v) dv ds \partial_t B = 0 => B_new = B_old. More... | |
subroutine | operatorhe_pic_vm_1d2v_hs (self, dt) |
Push H_E: Equations to be solved \partial_t f + E_1 \partial_{v_1} f + E_2 \partial_{v_2} f = 0 -> V_new = V_old + dt * E \partial_t E_1 = 0 -> E_{1,new} = E_{1,old} \partial_t E_2 = 0 -> E_{2,new} = E_{2,old} \partial_t B + \partial_{x_1} E_2 = 0 => B_new = B_old - dt \partial_{x_1} E_2. More... | |
subroutine | operatorhb_pic_vm_1d2v_hs (self, dt) |
Push H_B: Equations to be solved V_new = V_old \partial_t E_1 = 0 -> E_{1,new} = E_{1,old} \partial_t E_2 = - \partial_{x_1} B -> E_{2,new} = E_{2,old}-dt*\partial_{x_1} B \partial_t B = 0 -> B_new = B_old. More... | |
subroutine | initialize_pic_vm_1d2v_hs (self, maxwell_solver, kernel_smoother_0, kernel_smoother_1, particle_group, phi_dofs, efield_dofs, bfield_dofs, x_min, Lx, filter, boundary_particles, force_sign, jmean, control_variate, i_weight, betar, electrostatic, rhob) |
Constructor. More... | |
subroutine | delete_pic_vm_1d2v_hs (self) |
Destructor. More... | |
subroutine, public | sll_s_new_time_propagator_pic_vm_1d2v_hs (splitting, maxwell_solver, kernel_smoother_0, kernel_smoother_1, particle_group, phi_dofs, efield_dofs, bfield_dofs, x_min, Lx, filter, boundary_particles, force_sign, jmean, control_variate, i_weight, betar, electrostatic, rhob) |
Constructor for allocatable abstract type. More... | |
|
private |
[in,out] | self | time splitting object |
Definition at line 292 of file sll_m_time_propagator_pic_vm_1d2v_hs.F90.
|
private |
Destructor.
[in,out] | self | time splitting object |
Definition at line 607 of file sll_m_time_propagator_pic_vm_1d2v_hs.F90.
|
private |
Constructor.
[out] | self | time splitting object |
[in] | maxwell_solver | Maxwell solver |
[in] | kernel_smoother_0 | Kernel smoother |
[in] | kernel_smoother_1 | Kernel smoother |
[in] | phi_dofs | array for the coefficients of phi |
[in] | efield_dofs | array for the coefficients of the efields |
[in] | bfield_dofs | array for the coefficients of the bfield |
[in] | x_min | Lower bound of x domain |
[in] | lx | Length of the domain in x direction. |
[in] | control_variate | Control variate (if delta f) |
[in] | i_weight | Index of weight to be used by propagator |
[in] | betar | reciprocal plasma beta |
Definition at line 492 of file sll_m_time_propagator_pic_vm_1d2v_hs.F90.
|
private |
Lie splitting (oposite ordering)
[in,out] | self | time splitting object |
[in] | dt | time step |
[in] | number_steps | number of time steps |
Definition at line 184 of file sll_m_time_propagator_pic_vm_1d2v_hs.F90.
|
private |
Lie splitting.
[in,out] | self | time splitting object |
[in] | dt | time step |
[in] | number_steps | number of time steps |
Definition at line 160 of file sll_m_time_propagator_pic_vm_1d2v_hs.F90.
|
private |
Push H_B: Equations to be solved V_new = V_old \partial_t E_1 = 0 -> E_{1,new} = E_{1,old} \partial_t E_2 = - \partial_{x_1} B -> E_{2,new} = E_{2,old}-dt*\partial_{x_1} B \partial_t B = 0 -> B_new = B_old.
[in,out] | self | time splitting object |
[in] | dt | time step |
Definition at line 477 of file sll_m_time_propagator_pic_vm_1d2v_hs.F90.
|
private |
Push H_E: Equations to be solved \partial_t f + E_1 \partial_{v_1} f + E_2 \partial_{v_2} f = 0 -> V_new = V_old + dt * E \partial_t E_1 = 0 -> E_{1,new} = E_{1,old} \partial_t E_2 = 0 -> E_{2,new} = E_{2,old} \partial_t B + \partial_{x_1} E_2 = 0 => B_new = B_old - dt \partial_{x_1} E_2.
[in,out] | self | time splitting object |
[in] | dt | time step |
Definition at line 422 of file sll_m_time_propagator_pic_vm_1d2v_hs.F90.
|
private |
Push Hp1: Equations to solve are \partial_t f + v_1 \partial_{x_1} f = 0 -> X_new = X_old + dt V_1 V_new,2 = V_old,2 + \int_0 h V_old,1 B_old \partial_t E_1 = - \int v_1 f(t,x_1, v) dv -> E_{1,new} = E_{1,old} - \int \int v_1 f(t,x_1+s v_1,v) dv ds \partial_t E_2 = 0 -> E_{2,new} = E_{2,old} \partial_t B = 0 => B_new = B_old.
[in,out] | self | time splitting object |
[in] | dt | time step |
Definition at line 215 of file sll_m_time_propagator_pic_vm_1d2v_hs.F90.
|
private |
Push Hp2: Equations to solve are X_new = X_old V_new,1 = V_old,1 + \int_0 h V_old,2 B_old \partial_t E_1 = 0 -> E_{1,new} = E_{1,old} \partial_t E_2 = - \int v_2 f(t,x_1, v) dv -> E_{2,new} = E_{2,old} - \int \int v_2 f(t,x_1+s v_1,v) dv ds \partial_t B = 0 => B_new = B_old.
[in,out] | self | time splitting object |
[in] | dt | time step |
Definition at line 351 of file sll_m_time_propagator_pic_vm_1d2v_hs.F90.
|
private |
Finalization.
[in,out] | self | time splitting object |
Definition at line 122 of file sll_m_time_propagator_pic_vm_1d2v_hs.F90.
subroutine, public sll_m_time_propagator_pic_vm_1d2v_hs::sll_s_new_time_propagator_pic_vm_1d2v_hs | ( | class(sll_c_time_propagator_base), intent(out), allocatable | splitting, |
class(sll_c_maxwell_1d_base), intent(in), target | maxwell_solver, | ||
class(sll_c_particle_mesh_coupling_1d), intent(in), target | kernel_smoother_0, | ||
class(sll_c_particle_mesh_coupling_1d), intent(in), target | kernel_smoother_1, | ||
class(sll_t_particle_array), intent(in), target | particle_group, | ||
real(kind=f64), dimension(:), intent(in), target | phi_dofs, | ||
real(kind=f64), dimension(:,:), intent(in), target | efield_dofs, | ||
real(kind=f64), dimension(:), intent(in), target | bfield_dofs, | ||
real(kind=f64), intent(in) | x_min, | ||
real(kind=f64), intent(in) | Lx, | ||
class( sll_c_filter_base_1d ), intent(in), target | filter, | ||
integer(kind=i32), intent(in), optional | boundary_particles, | ||
real(kind=f64), intent(in), optional | force_sign, | ||
logical, intent(in), optional | jmean, | ||
class(sll_t_control_variates), intent(in), optional, target | control_variate, | ||
intent(in) | i_weight, | ||
dimension(2), optional | betar, | ||
logical, optional | electrostatic, | ||
dimension(:), intent(in) | rhob | ||
) |
Constructor for allocatable abstract type.
[out] | splitting | time splitting object |
[in] | maxwell_solver | Maxwell solver |
[in] | kernel_smoother_0 | Kernel smoother |
[in] | kernel_smoother_1 | Kernel smoother |
[in] | phi_dofs | array for the coefficients of phi |
[in] | efield_dofs | array for the coefficients of the efields |
[in] | bfield_dofs | array for the coefficients of the bfield |
[in] | x_min | Lower bound of x domain |
[in] | lx | Length of the domain in x direction. |
[in] | jmean | Should jmean be substracted in Ampere's law? |
[in] | control_variate | Control variate (if delta f) |
Definition at line 630 of file sll_m_time_propagator_pic_vm_1d2v_hs.F90.
|
private |
Strang splitting.
[in,out] | self | time splitting object |
[in] | dt | time step |
[in] | number_steps | number of time steps |
Definition at line 132 of file sll_m_time_propagator_pic_vm_1d2v_hs.F90.