Report Typos and Errors    
Semi-Lagrangian Library
Modular library for kinetic and gyrokinetic simulations of plasmas in fusion energy devices.
Fortran classes and interfaces
Here are the fortran derived types with brief descriptions.
[detail level 12]
 NfmempoolPlain Fortran implementation of a memory pool
 Nsll_m_accumulatorsParticle deposition routines
 Nsll_m_advection_1d_ampereSpectral 1d advection
 Nsll_m_advection_1d_baseAbstract class for advection
 Nsll_m_advection_1d_bslBackward semi-lagrangian 1d advection
 Nsll_m_advection_1d_cslConservative semi-lagrangian 1d advection
 Nsll_m_advection_1d_csl_periodicConservative semi-lagrangian 1d advection using periodic interpolation
 Nsll_m_advection_1d_non_uniform_cubic_splines
 Nsll_m_advection_1d_periodic
 Nsll_m_advection_1d_psmParabolic Spline Method
 Nsll_m_advection_1d_spectralSpectral 1d advection
 Nsll_m_advection_2d_base
 Nsll_m_advection_2d_bsl
 Nsll_m_advection_2d_csl
 Nsll_m_advection_2d_integer_oblicUse integer oblic interpolation
 Nsll_m_advection_2d_oblicUse oblic interpolation
 Nsll_m_advection_2d_tensor_productUse of CSL1D in 2D
 Nsll_m_advection_2d_tri_meshAdvection on triangular mesh
 Nsll_m_advection_6d_lagrange_dd_slimModule implementing Lagrange advection for the setting of a domain decomposition in 6d with extra buffers for the halo cells
 Nsll_m_advection_6d_spline_dd_slimModule implementing spline advection for the setting of a domain decomposition in 6d with extra buffers for the halo cells. The spline calculations are localized by an algorithm from signal processing
 Nsll_m_ascii_ioModule that contains routines to write data in ASCII format file
 Nsll_m_binary_ioImplements the functions to write binary file to store heavy data
 Nsll_m_binomial_filterBinomial filter for smooting of fields
 Nsll_m_box_splinesProvides capabilities for values and derivatives interpolation with box splines on hexagonal meshes
 Nsll_m_bsplines_baseAbstract class for B-splines of arbitrary degree
 Nsll_m_bsplines_non_uniformDerived type for non-uniform B-splines of arbitrary degree
 Nsll_m_bsplines_uniformDerived type for uniform B-splines of arbitrary degree
 Nsll_m_cartesian_meshesCartesian mesh basic types
 Nsll_m_characteristics_1d_baseAbstract class for characteristic derived type
 Nsll_m_characteristics_1d_explicit_eulerComputes the characteristic with explicit euler scheme
 Nsll_m_characteristics_1d_explicit_euler_conservativeComputes the characteristic with explicit euler conservative scheme
 Nsll_m_characteristics_1d_trapezoidComputes the characteristic with trapezoidal rule
 Nsll_m_characteristics_1d_trapezoid_conservativeConservative version of trapezoid
 Nsll_m_characteristics_2d_baseAbstract class to compute the characteristic in two dimensions
 Nsll_m_characteristics_2d_explicit_eulerComputes the characteristic with explicit euler scheme
 Nsll_m_characteristics_2d_explicit_euler_conservativeComputes the characteristic with explicit euler conservative scheme
 Nsll_m_characteristics_2d_verletComputes the characteristic with verlet method
 Nsll_m_collectiveParallelizing facility
 Nsll_m_common_array_initializers
 Nsll_m_compressionModule providing an F90 interface to the ZFP compression library: http://computation.llnl.gov/projects/floating-point-compression In addition it provides simple threaded (de)compression routines. Important: This module uses C-like 0-based indexing!
 Nsll_m_conjugate_gradient
 Nsll_m_const_coef_advection_2dImplements split operators for constant coefficient advection
 Nsll_m_control_variateControl variate
 Nsll_m_coordinate_transformation_2d_baseAbstract class for coordinate transformations
 Nsll_m_coordinate_transformations_2dAnalytic coordinate transformation
 Nsll_m_cubic_non_uniform_splinesProvides capabilities for data interpolation with cubic B-splines on non-uniform meshes
 Nsll_m_cubic_spline_interpolator_1dInterpolator 1d using cubic splines on regular mesh
 Nsll_m_cubic_spline_interpolator_1d_nonuniformImplements sll_c_interpolator_1d with cubic splines on non uniform mesh
 Nsll_m_cubic_spline_interpolator_2dClass for the cubic spline sll_c_interpolator_2d
 Nsll_m_cubic_splinesProvides capabilities for data and derivative interpolation with cubic B-splines and different boundary conditions
 Nsll_m_decompositionModule providing data structures and tools to implement domain decompositions
 Nsll_m_decomposition_advancedModule providing data structures and tools to implement domain decompositions
 Nsll_m_derivative_2d_oblic
 Nsll_m_descriptorsDescribes different global flags throughout the library
 Nsll_m_dg_fieldsSolve Maxwell equations on cartesian domain with Disconituous Galerkine method:
 Nsll_m_dg_interpolator_1dInterpolator 1d using dg interpolation
 Nsll_m_distribution_function_initializer_4d
 Nsll_m_distribution_function_initializer_6dData types that collect the parameters for various types of initial distributions and define the corresponding functions. This module takes care of the 6d case
 Nsll_m_ellipt_2d_cartesian_gradient
 Nsll_m_ellipt_2d_fem_sps_stencil_new_projector
 Nsll_m_ellipt_2d_fem_sps_weak_form
 Nsll_m_errors
 Nsll_m_extraction_operator_0
 Nsll_m_extraction_operator_11
 Nsll_m_extraction_operator_12
 Nsll_m_extraction_operator_transposed_0
 Nsll_m_extraction_operator_transposed_11
 Nsll_m_extraction_operator_transposed_12
 Nsll_m_fcisl
 Nsll_m_fekete_integrationFekete quadrature rules for a triangle
 Nsll_m_fftFFT interface for FFTW
 Nsll_m_fft_filter_1d
 Nsll_m_fft_filter_3d
 Nsll_m_filter_base_1dFilter base class
 Nsll_m_filter_base_3dFilter base class
 Nsll_m_finite_difference_interpolator_1dFinite differences implementation of sll_c_interpolator_1d
 Nsll_m_gauss_legendre_integrationGauss-Legendre integration
 Nsll_m_gauss_lobatto_integrationGauss-Lobatto integration
 Nsll_m_gaussian_2d_initializerInitializes a Gaussian of the form exp -((x-xc)**2/(2*sigma_x)**2 + (y-yc)**2/(2*sigma_y)**2)
 Nsll_m_gnuplotImplements the functions to write data file plotable by GNUplot
 Nsll_m_gnuplot_parallelParallel version of sll_m_gnuplot
 Nsll_m_gyroaverage_2d_base
 Nsll_m_gyroaverage_2d_polar
 Nsll_m_gyroaverage_2d_polar_computation
 Nsll_m_gyroaverage_2d_polar_hermite_solver
 Nsll_m_gyroaverage_2d_polar_pade_solver
 Nsll_m_gyroaverage_2d_polar_splines_solver
 Nsll_m_hamiltonian_splitting_baseBase class for Hamiltonian splittings
 Nsll_m_hdf5_io_parallelParallel version of sll_hdf5_io
 Nsll_m_hdf5_io_serialImplements the functions to write hdf5 file to store heavy data
 Nsll_m_hdf5_serialSimple object-oriented wrapper to Pierre's "sll_m_hdf5_io_serial"
 Nsll_m_hermite_aligned_interpolation_2d
 Nsll_m_hermite_interpolation_1d
 Nsll_m_hermite_interpolation_2d
 Nsll_m_hermite_interpolator_1dInterpolator class and methods of hermite 1D interpolator
 Nsll_m_hermite_interpolator_2dHermite interpolation in 2d
 Nsll_m_hexagonal_meshes
 Nsll_m_initial_distributionParameters to define common initial distributions
 Nsll_m_interpolators_1d_baseModule for 1D interpolation and reconstruction
 Nsll_m_interpolators_2d_baseAbstract data type for 2d interpolation
 Nsll_m_jacobian_2d_pseudo_cartesian
 Nsll_m_lagrange_interpolation
 Nsll_m_lagrange_interpolation_1d
 Nsll_m_lagrange_interpolator_1dInterpolator class and methods of Lagrange 1D interpolator
 Nsll_m_landau_2d_initializer
 Nsll_m_linear_operator_abstractModule for abstract linear operator
 Nsll_m_linear_operator_base
 Nsll_m_linear_operator_blockModule for a block linear operator
 Nsll_m_linear_operator_curl_3d
 Nsll_m_linear_operator_curl_cl_3d
 Nsll_m_linear_operator_ecsim
 Nsll_m_linear_operator_ecsim_eb
 Nsll_m_linear_operator_ecsim_ev
 Nsll_m_linear_operator_gtm
 Nsll_m_linear_operator_gtm_cl
 Nsll_m_linear_operator_kronModule for a linear operator of kronecker solver
 Nsll_m_linear_operator_matrix_c1_block
 Nsll_m_linear_operator_matrix_c1_block_new
 Nsll_m_linear_operator_matrix_dense_to_dense
 Nsll_m_linear_operator_matrix_dense_to_stencil
 Nsll_m_linear_operator_matrix_dense_to_stencil_new
 Nsll_m_linear_operator_matrix_stencil_to_dense
 Nsll_m_linear_operator_matrix_stencil_to_dense_new
 Nsll_m_linear_operator_matrix_stencil_to_stencil
 Nsll_m_linear_operator_maxwell_eb_schurThis linear operator implements the compatible spline FEM operator for the curl part of Maxwell's equation (Schur complement operator) on uniform periodic grid The operator is implemented based on its diagonal form in Fouier space It also contains a dot_inverse that applies the inverse of the matrix (by inversion in Fouier space
 Nsll_m_linear_operator_mg
 Nsll_m_linear_operator_mg_cl
 Nsll_m_linear_operator_particle_mass_1d
 Nsll_m_linear_operator_particle_mass_3d_diag
 Nsll_m_linear_operator_particle_mass_3d_od
 Nsll_m_linear_operator_particle_mass_cl_1d
 Nsll_m_linear_operator_particle_mass_cl_3d_diag
 Nsll_m_linear_operator_particle_mass_cl_3d_od
 Nsll_m_linear_operator_particle_mass_smooth_1d
 Nsll_m_linear_operator_penalizedModule for a penalized linear operator
 Nsll_m_linear_operator_poisson_1d
 Nsll_m_linear_operator_poisson_3d
 Nsll_m_linear_operator_poisson_clamped_1d
 Nsll_m_linear_operator_poisson_clamped_3d
 Nsll_m_linear_operator_schur_eb_1d
 Nsll_m_linear_operator_schur_eb_3d
 Nsll_m_linear_operator_schur_eb_cl_1d
 Nsll_m_linear_operator_schur_eb_cl_3d
 Nsll_m_linear_operator_schur_ev_1d
 Nsll_m_linear_operator_schur_ev_3d
 Nsll_m_linear_operator_schur_phiv_1d
 Nsll_m_linear_operator_schur_phiv_3d
 Nsll_m_linear_pendulum_operatorsImplements split operators for linear pendulum
 Nsll_m_linear_solver_abstractModule for abstract linear solver
 Nsll_m_linear_solver_blockModule for a block linear solver
 Nsll_m_linear_solver_cgModule for conjugate gradient method in pure form
 Nsll_m_linear_solver_iter_abstractModule for abstract iterative linear solvers
 Nsll_m_linear_solver_kronModule for kronecker linear solver
 Nsll_m_linear_solver_mgmresModule for a sequential gmres
 Nsll_m_linear_solver_spline_mass_2d_fftInvert a circulant matrix based on diagonalization in Fourier space (2d version)
 Nsll_m_linear_solver_spline_mass_fftInvert a circulant matrix based on diagonalization in Fourier space (3d version)
 Nsll_m_lobatto_poisson
 Nsll_m_low_level_bsplinesLow level arbitrary degree splines
 Nsll_m_mapping_2d
 Nsll_m_mapping_3dModule interfaces for coordinate transformation
 Nsll_m_matrix_abstractModule for abstract matrix
 Nsll_m_matrix_csrModule for Compressed Sparse Row Matrix (CSR)
 Nsll_m_maxwell_1d_baseModule interface to solve Maxwell's equations in 1D
 Nsll_m_maxwell_1d_femSolve Maxwell's equations in 1D
 Nsll_m_maxwell_1d_fem_smSolve Maxwell's equations in 1D based on spline FEM, version based on sparse matrices
 Nsll_m_maxwell_1d_psSolve Maxwell's equations in 1D based on a pseudospectral solver
 Nsll_m_maxwell_1d_trafoSolve Maxwell's equations in curvilinear coordinates in 1D based on spline FEM, version based on sparse matrices
 Nsll_m_maxwell_2d_digaDG for Maxwell
 Nsll_m_maxwell_2d_fdtdImplements the Maxwell solver in 2D with FDTD method
 Nsll_m_maxwell_2d_fem_fftModule interface to solve Maxwell's equations in 2D The linear systems are solved based on FFT diagnoalization
 Nsll_m_maxwell_2d_periodic_cartesian_parSelalib periodic 2D maxwell solver for cartesian coordinates
 Nsll_m_maxwell_2d_pstdImplements the Maxwell solver in 2D with periodic boundary conditions with PSTD method
 Nsll_m_maxwell_3d_baseModule interface to solve Maxwell's equations in 3D
 Nsll_m_maxwell_3d_femModule interface to solve Maxwell's equations in 3D The linear systems are solved using iterative linear solvers
 Nsll_m_maxwell_3d_fem_fftModule interface to solve Maxwell's equations in 3D The linear systems are solved based on FFT diagnoalization
 Nsll_m_maxwell_3d_pstdImplements the Maxwell solver in 3D with periodic boundary conditions with PSTD method
 Nsll_m_maxwell_3d_trafoModule interface to solve Maxwell's equations with coordinate transformation in 3D
 Nsll_m_maxwell_3d_trafo_parallelModule interface to solve Maxwell's equations with coordinate transformation in 3D The linear systems are solved using PLAF
 Nsll_m_maxwell_clamped_1d_fem_smSolve Maxwell's equations with boundary conditions in 1D based on spline FEM, version based on sparse matrices
 Nsll_m_maxwell_clamped_1d_trafoSolve Maxwell's equations in curvilinear coordinates with boundary conditions in 1D based on spline FEM, version based on sparse matrices
 Nsll_m_maxwell_clamped_3d_femModule interface to solve Maxwell's equations in 3D The linear systems are solved using PLAF
 Nsll_m_maxwell_clamped_3d_trafoModule interface to solve Maxwell's equations with coordinate transformation in 3D
 Nsll_m_maxwell_clamped_3d_trafo_parallelModule interface to solve Maxwell's equations with coordinate transformation in 3D
 Nsll_m_maxwell_solvers_baseThis module contains common subroutines for Maxwell solvers
 Nsll_m_meshes_base
 Nsll_m_moment_matching
 Nsll_m_mumps
 Nsll_m_nml_mesh_1d_cartInitialization of 1d cartesian mesh from namelist
 Nsll_m_nml_mesh_1d_landau_cartInitialization of 1d landau cartesian mesh from namelist
 Nsll_m_nml_mesh_1d_two_grid_cartInitialization of 1d two grid cartesian mesh from namelist
 Nsll_m_nml_mesh_1d_unif_cartInitialization of 1d uniform cartesian mesh from namelist
 Nsll_m_nufft_interpolation
 Nsll_m_nufft_interpolator_2dClass for the nufft inmplementation of sll_c_interpolator_2d
 Nsll_m_ode_integrator_baseAbstract types for: 1) generic ODE system, and 2) ODE integrator
 Nsll_m_ode_solvers
 Nsll_m_operator_splittingBase class of operator splitting library. It is only used with particle-in-cell method
 Nsll_m_operator_splitting_pic_vp_2d2vParticle pusher based on operator splitting for 2d2v Vlasov-Poisson
 Nsll_m_parallel_array_initializer
 Nsll_m_paralution
 Nsll_m_particle_group_1d1vSimple particle group type for 1d1v
 Nsll_m_particle_group_1d2vSimple particle group type for 1d2v
 Nsll_m_particle_group_2d
 Nsll_m_particle_group_2d2vSimple particle group group for 2d2v
 Nsll_m_particle_group_2d2v_lbfModule for a particle group with linearized-backward-flow (lbf) resamplings
 Nsll_m_particle_group_2d3vSimple particle group group for 2d3v
 Nsll_m_particle_group_3d1vSimple particle group type for 3d1v
 Nsll_m_particle_group_3d3vSimple particle group group for 3d3v
 Nsll_m_particle_group_4d
 Nsll_m_particle_group_6d
 Nsll_m_particle_group_base
 Nsll_m_particle_mass_1d_base
 Nsll_m_particle_mass_3d_base
 Nsll_m_particle_mesh_coupling_base_1dBase class for kernel smoothers for accumulation and field evaluation in PIC
 Nsll_m_particle_mesh_coupling_base_3dBase class for kernel smoothers for accumulation and field evaluation in PIC
 Nsll_m_particle_mesh_coupling_spline_1dKernel smoother for 1d with splines of arbitrary degree placed on a uniform mesh
 Nsll_m_particle_mesh_coupling_spline_2dKernel smoother for 2d with splines of arbitrary degree placed on a uniform mesh
 Nsll_m_particle_mesh_coupling_spline_2d_feecParticle mesh coupling for 3d with splines of arbitrary degree placed on a uniform tensor product mesh
 Nsll_m_particle_mesh_coupling_spline_3d_feecParticle mesh coupling for 3d with splines of arbitrary degree placed on a uniform tensor product mesh
 Nsll_m_particle_mesh_coupling_spline_cl_1dKernel smoother for 2d with splines of arbitrary degree placed on a uniform mesh
 Nsll_m_particle_mesh_coupling_spline_cl_3d_feecParticle mesh coupling for 3d with splines of arbitrary degree placed on a uniform tensor product mesh
 Nsll_m_particle_mesh_coupling_spline_smooth_1dKernel smoother for 2d with splines of arbitrary degree placed on a uniform mesh
 Nsll_m_particle_mesh_coupling_spline_strong_1dKernel smoother for 1d with splines of arbitrary degree placed on a uniform mesh. This version is for a formulation of the Maxwell's equation with strong Ampere
 Nsll_m_particle_representations
 Nsll_m_particle_samplingParticle initializer class with various functions to initialize a particle
 Nsll_m_particle_sampling_interfaceInterface routines for sampling and resampling particle groups
 Nsll_m_particle_sort
 Nsll_m_particle_visualization_interfaceInterface routines for visualizing particle groups
 Nsll_m_pastix
 Nsll_m_penta_diagonalToeplitz penta-diagonal system solver
 Nsll_m_periodic_interp
 Nsll_m_periodic_interpolator_1dInterpolator with periodic boundary conditions
 Nsll_m_pic_poisson_2dFactory method for Poisson solver for particle methods in 2d build from 2d Poisson solver and a kernel smoother
 Nsll_m_pic_poisson_baseBase class for Poisson solver for particle methods
 Nsll_m_pic_viewerThis module provides some routines for plotting fields and particles during PIC simulations
 Nsll_m_pic_visuThis module provides some routines for plotting during PIC simulations
 Nsll_m_pif_fieldsolver
 Nsll_m_plotmtvImplements the functions to write data file plotable by Plotmtv
 Nsll_m_point_to_point_comms
 Nsll_m_poisson_1d_baseModule interface to solve Poisson equation in 1D
 Nsll_m_poisson_1d_hmfModule to solve Poisson equation for the HMF model
 Nsll_m_poisson_1d_periodicModule to sll_o_solve Poisson equation on one dimensional mesh using FFT transform
 Nsll_m_poisson_2d_baseModule interface to solve Poisson equation in 2D
 Nsll_m_poisson_2d_femPoisson solver using finite element
 Nsll_m_poisson_2d_fem_fft
 Nsll_m_poisson_2d_fem_sps_dense
 Nsll_m_poisson_2d_fem_sps_dense_assembler
 Nsll_m_poisson_2d_fem_sps_dense_projector
 Nsll_m_poisson_2d_fem_sps_stencil_new
 Nsll_m_poisson_2d_fem_sps_stencil_new_assembler
 Nsll_m_poisson_2d_fem_sps_weak_form
 Nsll_m_poisson_2d_mudpack_curvilinearSolves Poisson equation on 2d curvilinear mesh
 Nsll_m_poisson_2d_periodicRegular cartesian two dimensional mesh with periodic bounday conditions
 Nsll_m_poisson_2d_periodic_parSelalib periodic 2D poisson solver for cartesian coordinates
 Nsll_m_poisson_2d_polarSerial Poisson solver on 2D polar mesh; uses FFT in theta and 2nd-order FD in r
 Nsll_m_poisson_2d_polar_parParallel Poisson solver on 2D polar mesh; uses FFT in theta and 2nd-order FD in r
 Nsll_m_poisson_2d_sparse_grid_fftImplementation of a 3D pseudospectral Poisson solver on sparse grid
 Nsll_m_poisson_2d_tri
 Nsll_m_poisson_3d_baseModule interface to solve Poisson equation in 3D
 Nsll_m_poisson_3d_fem_fft
 Nsll_m_poisson_3d_periodic3D poisson solver with periodic boundary conditions
 Nsll_m_poisson_3d_periodic_parPeriodic 3D poisson solver (parallel version)
 Nsll_m_poisson_3d_sparse_grid_fftImplementation of a 3D pseudospectral Poisson solver on sparse grid
 Nsll_m_polar_bsplines_2d
 Nsll_m_polar_spline_interpolator_2dInterpolator for 2D polar splines of arbitrary degree, on uniform and non-uniform grids (directions are independent)
 Nsll_m_preconditioner_curl_solver_fftInvert a circulant matrix based on diagonalization in Fourier space (3d version)
 Nsll_m_preconditioner_fftModule interface to solve Maxwell's equations with coordinate transformation in 3D The linear systems are solved using PLAF
 Nsll_m_preconditioner_jacobiModule interface to solve Maxwell's equations
 Nsll_m_preconditioner_poisson_fftThis module is a wrapper around the spline FEM Poisson solver for the uniform grid with periodic boundary condtions inverted with FFTs The wrapper as a type sll_t_linear_solver_abstract allows for the use of the solver as a preconditioner to a linear solver
 Nsll_m_preconditioner_singularModule interface to solve Maxwell's equations with coordinate transformation in 3D The linear systems are solved using PLAF
 Nsll_m_profile_functionsFunctions for initial profile of the particle distribution function
 Nsll_m_qn_2d_base
 Nsll_m_qn_2d_polar
 Nsll_m_qn_2d_polar_splines_solver
 Nsll_m_qn_solver_2d_fem_sps_stencil_new
 Nsll_m_qn_solver_2d_fem_sps_stencil_new_assembler
 Nsll_m_qn_solver_2d_fem_sps_weak_form
 Nsll_m_qn_solver_2d_polarSerial quasi-neutrality solver on 2D polar mesh; uses FFT in theta and 2nd-order FD in r
 Nsll_m_qn_solver_2d_polar_parParallel quasi-neutrality solver on 2D polar mesh; uses FFT in theta and 2nd-order FD in r
 Nsll_m_qn_solver_3d_polar_parParallel 3D quasi-neutrality solver on "extruded" 2D polar mesh
 Nsll_m_rectangle_integrationRectangle integration
 Nsll_m_reduction
 Nsll_m_rk_explicit
 Nsll_m_rk_implicit
 Nsll_m_scalar_field_1dImplements the geometry and mesh descriptor types
 Nsll_m_scalar_field_1d_base
 Nsll_m_scalar_field_1d_oldImplements the geometry and mesh descriptor types
 Nsll_m_scalar_field_2dImplements the field descriptor types
 Nsll_m_scalar_field_2d_base
 Nsll_m_scalar_field_2d_base_old
 Nsll_m_scalar_field_2d_oldScalar field on mesh with coordinate transformation
 Nsll_m_scalar_field_initializers_base
 Nsll_m_sim_baseParent class module for simulation
 Nsll_m_singular_mapping_advector_base
 Nsll_m_singular_mapping_advector_constant
 Nsll_m_singular_mapping_advector_rotating
 Nsll_m_singular_mapping_analytic
 Nsll_m_singular_mapping_analytic_czarny
 Nsll_m_singular_mapping_analytic_target
 Nsll_m_singular_mapping_base
 Nsll_m_singular_mapping_discrete
 Nsll_m_sparse_grid_2dImplementation of a 2D sparse grid with interpolation routines
 Nsll_m_sparse_grid_3dImplementation of a 3D sparse grid with interpolation routines
 Nsll_m_sparse_grid_4dImplementation of a 4D sparse grid with interpolation routines
 Nsll_m_sparse_grid_interpolatorDimension-independent functions for sparse grid with polynomial basis functions
 Nsll_m_sparse_matrixSparse matrix linear solver utilities
 Nsll_m_spline_1dModule for 1D splines, linear combination of B-spline functions
 Nsll_m_spline_2dModule for tensor-product 2D splines
 Nsll_m_spline_fem_utilitiesUtilites for Maxwell solver's with spline finite elements
 Nsll_m_spline_fem_utilities_3dUtilites for 3D Maxwell solvers with spline finite elements
 Nsll_m_spline_interpolator_1dInterpolator for 1D splines of arbitrary degree, on uniform and non-uniform grids
 Nsll_m_spline_interpolator_2dInterpolator for 2D tensor-product splines of arbitrary degree, on uniform and non-uniform grids (directions are independent)
 Nsll_m_spline_matrix_bandedDerived type for banded matrices
 Nsll_m_spline_matrix_baseAbstract class for small matrix library with basic operations: set matrix element, factorize, solve and write to output
 Nsll_m_spline_matrix_denseDerived type for dense matrices
 Nsll_m_spline_matrix_periodic_bandedDerived type for periodic banded matrices
 Nsll_m_splines_ppSplines in pp form
 Nsll_m_split_advection_2dImplements split operators for constant coefficient advection
 Nsll_m_time_composition
 Nsll_m_time_propagator_baseBase class for Hamiltonian splittings
 Nsll_m_time_propagator_pic_vm_1d2v_borisBoris pusher in GEMPIC framework (spline finite elements)
 Nsll_m_time_propagator_pic_vm_1d2v_cefParticle pusher based on Hamiltonian splitting proposed by Crouseilles, Einkemmer, Faou for 1d2v Vlasov-Maxwell
 Nsll_m_time_propagator_pic_vm_1d2v_disgradeParticle pusher based on energy (not charge-conserving) discrete gradient method, semi-implicit
 Nsll_m_time_propagator_pic_vm_1d2v_disgrade_trafoParticle pusher based on antisymmetric splitting with AVF for 1d2v Vlasov-Poisson with coordinate transformation
 Nsll_m_time_propagator_pic_vm_1d2v_disgradecParticle pusher based on energy and charge-conserving discrete gradient method, implicit
 Nsll_m_time_propagator_pic_vm_1d2v_disgradec_subParticle pusher based on a variation of the energy and charge-conserving discrete gradient method with subcycling, implicit
 Nsll_m_time_propagator_pic_vm_1d2v_disgradec_trafoParticle pusher based on antisymmetric splitting with AVF for 1d2v Vlasov-Poisson with coordinate transformation
 Nsll_m_time_propagator_pic_vm_1d2v_ecsimParticle pusher based on Lapentas splitting in Ecsim for 1d2v Vlasov-Poisson
 Nsll_m_time_propagator_pic_vm_1d2v_ecsim2oParticle pusher based on Lapentas splitting in Ecsim for 1d2v Vlasov-Poisson
 Nsll_m_time_propagator_pic_vm_1d2v_helper
 Nsll_m_time_propagator_pic_vm_1d2v_hsParticle pusher based on Hamiltonian splitting for 1d2v Vlasov-Poisson
 Nsll_m_time_propagator_pic_vm_1d2v_hs_trafoParticle pusher based on Hamiltonian splitting for 1d2v Vlasov-Maxwell with coordinate transformation
 Nsll_m_time_propagator_pic_vm_1d2v_momentumParticle pusher based on Hamiltonian splitting for 1d2v Vlasov-Maxwell in the momentum conserving, non-geometric form (see the reference)
 Nsll_m_time_propagator_pic_vm_1d2v_subcycParticle pusher based on the subcycling algorithm for the 1d2v Vlasov-Maxwell equation
 Nsll_m_time_propagator_pic_vm_1d2v_trafo_helperParticle pusher based on antisymmetric splitting with AVF for 1d2v Vlasov-Poisson with coordinate transformation
 Nsll_m_time_propagator_pic_vm_1d2v_zigsubParticle pusher based on the subcycling algorithm for the 1d2v Vlasov-Maxwell equation with splitting of the three H_p parts
 Nsll_m_time_propagator_pic_vm_2d3v_hsParticle pusher based on Hamiltonian splitting for 2d3v Vlasov-Maxwell
 Nsll_m_time_propagator_pic_vm_3d3v_cefParticle pusher based on Hamiltonian splitting using in Crouseilles, Einkemmer, Faou for 3d3v Vlasov-Maxwell
 Nsll_m_time_propagator_pic_vm_3d3v_cef_trafoParticle pusher based on Hamiltonian splitting for 3d3v Vlasov-Maxwell with coordinate transformation
 Nsll_m_time_propagator_pic_vm_3d3v_cl_helperParticle pusher based on antisymmetric splitting with AVF for 3d3v Vlasov-Maxwell with coordinate transformation
 Nsll_m_time_propagator_pic_vm_3d3v_disgradeParticle pusher based on antisymmetric splitting with disgradE for 3d3v Vlasov-Maxwell
 Nsll_m_time_propagator_pic_vm_3d3v_disgrade_trafoParticle pusher based on antisymmetric splitting with disgradE for 3d3v Vlasov-Maxwell with coordinate transformation
 Nsll_m_time_propagator_pic_vm_3d3v_disgrade_truncParticle pusher based on antisymmetric splitting with disgradE for 3d3v Vlasov-Maxwell, modified by approximating particle mass by mass matrix
 Nsll_m_time_propagator_pic_vm_3d3v_disgradecParticle pusher based on antisymmetric splitting with discrete gradient method for 3d3v Vlasov-Maxwell, implicit charge conserving variant
 Nsll_m_time_propagator_pic_vm_3d3v_disgradec_trafoParticle pusher based on antisymmetric splitting with discrete gradient method for 3d3v Vlasov-Maxwell with coordinate transformation
 Nsll_m_time_propagator_pic_vm_3d3v_helperParticle pusher based on antisymmetric splitting with AVF for 3d3v Vlasov-Maxwell
 Nsll_m_time_propagator_pic_vm_3d3v_hsParticle pusher based on Hamiltonian splitting for 3d3v Vlasov-Maxwell
 Nsll_m_time_propagator_pic_vm_3d3v_hs_trafoParticle pusher based on Hamiltonian splitting for 3d3v Vlasov-Maxwell with coordinate transformation
 Nsll_m_time_propagator_pic_vm_3d3v_trafo_helper
 Nsll_m_timerWe can now use the functions
 Nsll_m_trapz_integrationTrapezoid formula for numerical integration
 Nsll_m_triangular_meshes
 Nsll_m_tridiagonalTridiagonal system solver
 Nsll_m_tsi_2d_initializer
 Nsll_m_utilitiesSome common numerical utilities
 Nsll_m_uzawa_iterator
 Nsll_m_vector_space_baseAbstract type implementing a generic vector space
 Nsll_m_vector_space_c1_blockVector space for wrapping 2D Fortran real arrays
 Nsll_m_vector_space_real_array_1dVector space for wrapping 1D Fortran real arrays
 Nsll_m_vector_space_real_array_2dVector space for wrapping 2D Fortran real arrays
 Nsll_m_vector_space_real_array_3dVector space for wrapping 3D Fortran real arrays
 Nsll_m_vector_space_real_arrays
 Nsll_m_xdmfImplements the functions to write xdmf file plotable by VisIt
 Nsll_m_xdmf_light_parallelConstruct the XML component of an XDMF database (parallel)
 Nsll_m_xdmf_light_serialConstruct the XML component of an XDMF database (sequential)
 Nsll_m_xdmf_parallelImplements the functions to write xdmf file plotable by VisIt
 Nsll_m_xdmf_serial_blocksImplements the functions to write xdmf file plotable by VisIt
 Nsll_m_xmlFacilities for constructing an XML tree and printing it to file
 Nsll_m_xml_ioImplements the functions to write xml file to store light data
 Cscalar_field_2d_initializer_base
 Csll_gyroaverage_2d_base
    Report Typos and Errors